從硅過(guò)渡到碳化硅,MOSFET的結(jié)構(gòu)及性能優(yōu)劣勢(shì)對(duì)比
出處:廠商供稿 發(fā)布于:2022-02-23 13:52:34
近年來(lái),因?yàn)樾履茉雌嚒⒐夥皟?chǔ)能、各種電源應(yīng)用等下游市場(chǎng)的驅(qū)動(dòng),碳化硅功率器件取得了長(zhǎng)足發(fā)展。更快的開(kāi)關(guān)速度,更好的溫度特性使得系統(tǒng)損耗大幅降低,效率提升,體積減小,從而實(shí)現(xiàn)變換器的高效高功率密度化。但是,像碳化硅這樣的寬帶隙(WBG)器件也給應(yīng)用研發(fā)帶來(lái)了設(shè)計(jì)挑戰(zhàn),因而業(yè)界對(duì)于碳化硅 MOSFET平面柵和溝槽柵的選擇和權(quán)衡以及其浪涌電流、短路能力、柵極可靠性等仍心存疑慮。
碳化硅MOSFET性能如何?
650V-1200V電壓等級(jí)的SiC MOSFET商業(yè)產(chǎn)品已經(jīng)從Gen 2發(fā)展到了Gen 3,隨著技術(shù)的發(fā)展,元胞寬度持續(xù)減小,比導(dǎo)通電阻持續(xù)降低,器件性能超越Si器件,浪涌電流、短路能力、柵氧可靠性等可靠性問(wèn)題備受關(guān)注。那么SiC MOSFET體二極管能抗多大的浪涌電流?其短路能力如何?如何保證柵極可靠性?
SiC MOSFET的體二極管抗浪涌電流大小與芯片的大小成正比。像派恩杰半導(dǎo)體采用自己搭建的10ms正弦半波浪涌極限測(cè)試平臺(tái)和10us方波半波浪涌極限測(cè)試平臺(tái)對(duì)其1200V的SiC MOSFET P3M12080K3進(jìn)行抽樣測(cè)試10ms IFSM 》120A, 10us IFSM》1100A。
圖1 10ms浪涌極限測(cè)試平臺(tái)
圖2 10us浪涌極限測(cè)試平臺(tái)
至于短路能力,相較與Si IGBT,SiC MOSFET電流密度更高且柵極氧化層較薄,其短路能力要弱于Si IGBT,但其依然有一定的短路能力。
下表是派恩杰半導(dǎo)體部分產(chǎn)品短路能力:
表1 1200V/650V MOSFET器件短路耐量
派恩杰半導(dǎo)體針對(duì)柵極的可靠性是嚴(yán)格按照AEC-Q101標(biāo)準(zhǔn)進(jìn)行,在柵極分別加負(fù)壓和正壓(-4V/ 15V)溫度175℃下進(jìn)行HTGBR和HTRB實(shí)驗(yàn)1000h無(wú)產(chǎn)品失效。除了常規(guī)AEC-Q101中要求的1000h小時(shí)實(shí)驗(yàn),派恩杰半導(dǎo)體對(duì)于柵極壽命經(jīng)行了大量研究。由于SiC/SiO2界面存在比Si/SiO2更大數(shù)量級(jí)的雜質(zhì)缺陷,因此SiC MOSFET通常擁有更高的早期失效概率。為了提高SiC MOSFET的柵極可靠性,通過(guò)篩選識(shí)別并出早期失效非常重要。派恩杰半導(dǎo)體通過(guò)TDDB實(shí)驗(yàn)建立柵氧加速模型并建立篩選機(jī)制來(lái)消除潛在的失效可能性器件(可見(jiàn)往期推送)。
除了TDDB外,當(dāng)正常器件使用時(shí),由于半導(dǎo)體-氧化界面處缺陷的產(chǎn)生或充放電,SiC MOSFET的閾值電壓會(huì)有漂移現(xiàn)象,閾值電壓的漂移可能對(duì)器件長(zhǎng)期運(yùn)行產(chǎn)生明顯影響。派恩杰半導(dǎo)體在高溫條件下給SiC MOSFET施加恒定的DC偏壓,觀察其閾值電壓的變化量。一般施加正向偏壓應(yīng)力時(shí),閾值電壓向更高的電壓偏移;施加負(fù)向偏壓應(yīng)力時(shí),閾值電壓向更低的電壓偏移。這種效應(yīng)是由于SiC/SiO2界面處或附近的載流子捕獲引起的,負(fù)向高壓是MOS界面附近的空穴被俘獲,產(chǎn)生更多的空穴陷阱;相反正向高壓造成電子的俘獲。 當(dāng)然,也有的競(jìng)品產(chǎn)品在施加正向偏壓應(yīng)力時(shí),閾值電壓向更低的電壓偏移;施加負(fù)向偏壓應(yīng)力時(shí),閾值電壓向更高的電壓偏移。這是由于可移動(dòng)離子在SiC/SiO2界面積累造成的,正向的偏壓使得正性的可移動(dòng)離子在SiO2/SiC界面積累,造成閾值電壓負(fù)向漂移;負(fù)向的偏壓使得正性的可移動(dòng)離子在poly/SiO2界面積累,造成閾值電壓正偏。為評(píng)估器件在使用過(guò)程中閾值電壓漂移情況,派恩杰半導(dǎo)體進(jìn)行了大量BTI實(shí)驗(yàn),基于實(shí)驗(yàn)數(shù)據(jù)建立了PBTI&NBTI模型,借助模型可知曉器件在不同溫度和柵壓情況下的閾值電壓漂移程度。以P3M12080K4產(chǎn)品為例,該產(chǎn)品在極端應(yīng)用情況下(PBTI:Vgs=19V,TA=150℃)使用20年閾值電壓的漂移情況( 0.348V),該產(chǎn)品在極端應(yīng)用情況下(NBTI:Vgs=-8V,TA=150℃)使用20年閾值電壓的漂移情況(-0.17V)。
Cascode、平面柵、溝槽柵優(yōu)缺點(diǎn)
為提高高壓電源系統(tǒng)能源效率,半導(dǎo)體業(yè)者無(wú)不積極研發(fā)經(jīng)濟(jì)型高性能碳化硅功率器件,例如Cascode結(jié)構(gòu)、碳化硅MOSFET平面柵結(jié)構(gòu)、碳化硅MOSFET溝槽柵結(jié)構(gòu)等。這些不同的技術(shù)對(duì)于碳化硅功率器件應(yīng)用到底有什么影響,該如何選擇呢?
首先,Cascode是指采用Si MOSFET和常開(kāi)型的SiC JFET串聯(lián)連接,如圖3所示。當(dāng)Si MOSFET柵極為高電平時(shí),MOSFET導(dǎo)通使得SiC JFET的GS短路,從而使其導(dǎo)通。當(dāng)Si MOSFET柵極為低電平時(shí),其漏極電壓上升直至使SiC JFET的GS電壓達(dá)到其關(guān)斷的負(fù)壓時(shí),這時(shí)器件關(guān)斷。Cascode結(jié)構(gòu)主要的優(yōu)點(diǎn)是相同的導(dǎo)通電阻有更小的芯片面積,由于柵極開(kāi)關(guān)由Si MOSFET控制,使得客戶在應(yīng)用中可以沿用Si的驅(qū)動(dòng)設(shè)計(jì),不需要單獨(dú)設(shè)計(jì)驅(qū)動(dòng)電路。
圖3 SiC Cascode結(jié)構(gòu)示意圖
派恩杰半導(dǎo)體認(rèn)為,Cascode結(jié)構(gòu)只是從Si產(chǎn)品轉(zhuǎn)向SiC產(chǎn)品的一個(gè)過(guò)渡產(chǎn)品,因?yàn)镃ascode結(jié)構(gòu)完全無(wú)法發(fā)揮出SiC器件的獨(dú)特優(yōu)勢(shì)。首先,由于集成了Si MOSFET限制了Cascode的高溫應(yīng)用,特別是其高溫Rdson會(huì)達(dá)到常溫下的2倍;其次,器件開(kāi)關(guān)是由Si MOSFET控制,因此開(kāi)關(guān)頻率遠(yuǎn)低于正常SiC MOSFET器件,這是由于JFET和Si MOSFET的合封其dv/dt也只能達(dá)到10V/ns 以下,而SiC MOSFET的dv/dt通??梢缘竭_(dá)30V/ns~80V/ns。這些缺點(diǎn)使得Cascode也無(wú)法減小無(wú)源元件的尺寸,從而達(dá)到減小整體系統(tǒng)體積和成本的需求;很后,雖然從Cascode結(jié)構(gòu)上是由SiC 高壓JFET器件來(lái)承受母線電壓,但是在開(kāi)關(guān)過(guò)程中,MOSFET和JFET的輸出電容依然會(huì)分壓,當(dāng)回路中存在電壓震蕩時(shí),低壓Si MOSFET依然有被擊穿的風(fēng)險(xiǎn)。
SiC MOSFET溝槽柵的主要優(yōu)勢(shì)來(lái)源于縱向溝道,這不但提高了載流子遷移率(這是由于SiC(1120)晶面的遷移率高于(0001)晶面)而且可以縮小元胞尺寸從而有比平面型MOSFET更低的比導(dǎo)通電阻。然而,由于SiC非常堅(jiān)硬,想要獲得均勻,光滑且垂直的刻蝕表面的工藝難度和控制要求都非常的高,這也是只有英飛凌和Rohm推出溝槽柵SiC MOSFET的原因。溝槽柵工藝不僅對(duì)工藝實(shí)現(xiàn)要求非常高,在可靠性方面也存在一定的風(fēng)險(xiǎn)。首先,由于溝槽刻蝕后表面粗糙度和角度的限制使得溝槽柵的柵氧質(zhì)量存在風(fēng)險(xiǎn);其次,由于SiC的各向異性,溝槽側(cè)壁的氧化層厚度和溝槽底部的氧化層厚度不同,因此必須采用特殊的結(jié)構(gòu)和工藝來(lái)避免溝槽底部特別是拐角部分的擊穿,這也增加了溝槽柵柵氧可靠性的不確定性;很后,由于trench MOSFET的結(jié)構(gòu),使得trench柵氧的電場(chǎng)強(qiáng)度要高于平面型,這也是Infineon和Rohm要做單邊和雙溝槽的原因。
SiC MOSFET平面柵則是很早也是應(yīng)用很廣泛的結(jié)構(gòu),目前主流的產(chǎn)品均使用該結(jié)構(gòu)。派恩杰半導(dǎo)體產(chǎn)品采用的是也是平面柵MOSFET結(jié)構(gòu)?;谄矫鏂沤Y(jié)構(gòu),派恩杰已經(jīng)發(fā)布了650V-1700V各個(gè)電壓平臺(tái)的SiC MOSFET,而且已經(jīng)順利在新能源領(lǐng)頭雁企業(yè)批量供貨,實(shí)現(xiàn)“上車”。
上一篇:負(fù)荷傳感器圖解
版權(quán)與免責(zé)聲明
凡本網(wǎng)注明“出處:維庫(kù)電子市場(chǎng)網(wǎng)”的所有作品,版權(quán)均屬于維庫(kù)電子市場(chǎng)網(wǎng),轉(zhuǎn)載請(qǐng)必須注明維庫(kù)電子市場(chǎng)網(wǎng),http://www.udpf.com.cn,違反者本網(wǎng)將追究相關(guān)法律責(zé)任。
本網(wǎng)轉(zhuǎn)載并注明自其它出處的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品出處,并自負(fù)版權(quán)等法律責(zé)任。
如涉及作品內(nèi)容、版權(quán)等問(wèn)題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
- 電表互感器匝數(shù)倍率怎么看?2025/9/5 17:05:11
- 顏色傳感器原理及實(shí)際應(yīng)用案例2025/9/5 16:09:23
- 調(diào)諧器和調(diào)制器的區(qū)別2025/9/4 17:25:45
- 有載變壓器和無(wú)載變壓器的區(qū)別有哪些2025/9/4 17:13:35
- 什么是晶體諧振器?晶體諧振器的作用2025/9/4 16:57:42
- 線性穩(wěn)壓電源與開(kāi)關(guān)穩(wěn)壓電源:原理、特性及應(yīng)用
- 電容器旁路的基本原理
- TTL、RS232、485 到底能傳輸多遠(yuǎn)距離
- 一文了解車規(guī)級(jí)芯片認(rèn)證標(biāo)準(zhǔn)
- eMMC 屬于閃存還是內(nèi)存?從定義到應(yīng)用講透核心區(qū)別
- 什么是芯片的納米等級(jí)的含義,28nm,14nm,3nm 工藝
- 一文詳解:半導(dǎo)體、芯片、集成電路、晶圓之差異
- 深度解析:“直流變頻” 與 “變頻” 的本質(zhì)區(qū)別與應(yīng)用選擇
- 直線電機(jī)工作原理與應(yīng)用全解析
- 空調(diào)空開(kāi)跳閘的原因及解決方法