一種太陽(yáng)能光伏電池電氣性能的測(cè)試
出處:computer00 發(fā)布于:2011-08-27 09:31:31
太陽(yáng)能光伏電池(簡(jiǎn)稱光伏電池)用于把太陽(yáng)的光能直接轉(zhuǎn)化為電能。目前地面光伏系統(tǒng)大量使用的是以硅為基底的硅太陽(yáng)能電池,可分為單晶硅、多晶硅、非晶硅太陽(yáng)能電池。在能量轉(zhuǎn)換效率和使用壽命等綜合性能方面,單晶硅和多晶硅電池優(yōu)于非晶硅電池。多晶硅比單晶硅轉(zhuǎn)換效率低,但價(jià)格更便宜。按照應(yīng)用需求,太陽(yáng)能電池經(jīng)過(guò)一定的組合,達(dá)到一定的額定輸出功率和輸出的電壓的一組光伏電池,叫光伏組件。根據(jù)光伏電站大小和規(guī)模,由光伏組件可組成各種大小不同的陣列。光伏組件,采用高效率單晶硅或多晶硅光伏電池、高透光率鋼化玻璃、Tedlar、抗腐蝕鋁合多邊框等材料,使用先進(jìn)的真空層壓工藝及脈沖焊接工藝制造。即使在嚴(yán)酷的環(huán)境中也能保證長(zhǎng)的使用壽命。
PV:photovoltaic縮寫(xiě),指利用太陽(yáng)能發(fā)電,光伏行業(yè)。光伏發(fā)電是太陽(yáng)能發(fā)電技術(shù)的一種, 是根據(jù)光生伏打效應(yīng)原理產(chǎn)生的電能,利用太陽(yáng)電池將太陽(yáng)光能直接轉(zhuǎn)化為電能。不論是獨(dú)立使用還是并網(wǎng)發(fā)電,光伏發(fā)電系統(tǒng)主要由太陽(yáng)電池板(組件)、控制器和逆變器三大部分組成,它們主要由電子元器件構(gòu)成,不涉及機(jī)械部件,所以,光伏發(fā)電設(shè)備極為精煉,可靠穩(wěn)定壽命長(zhǎng)、安裝維護(hù)簡(jiǎn)便。理論上講,光伏發(fā)電技術(shù)可以用于任何需要電源的場(chǎng)合,上至航天器,下至家用電源,大到兆瓦級(jí)電站,小到玩具,光伏電源可以無(wú)處不在。目前,光伏發(fā)電產(chǎn)品主要用于三大方面:一是為無(wú)電場(chǎng)合提供電源,主要為廣大無(wú)電地區(qū)居民生活生產(chǎn)提供電力,還有微波中繼電源等,另外,還包括一些移動(dòng)電源和備用電源;二是太陽(yáng)能日用電子產(chǎn)品,如各類(lèi)太陽(yáng)能充電器、太陽(yáng)能路燈和太陽(yáng)能草地廠各種燈具等
PV電池采用各種吸光材料制作,包括結(jié)晶和非晶硅,碲化鎘(CdTe)和銅銦鎵硒化物(CIGS)材料制成的薄膜,以及有機(jī)/聚合物類(lèi)的材料。
PV電池的等效電路模型(如圖1所示)能夠幫助我們深入了解這種器件的工作原理。理想PV電池的模型可以表示為一個(gè)感光電流源并聯(lián)一個(gè)二極管。光源中的光子被太陽(yáng)能電池材料吸收。如果光子的能量高于電池材料的能帶,那么電子就被激發(fā)到導(dǎo)帶中。如果將一個(gè)外部負(fù)載連接到PV電池的輸出端,那么就會(huì)產(chǎn)生電流。
PV電池/光子hυ/負(fù)載

圖1.由一個(gè)串聯(lián)電阻(RS)和一個(gè)分流電阻(rsh)和一個(gè)光驅(qū)電流源構(gòu)成的光伏電池等效電路。
由于電池襯底材料及其金屬導(dǎo)線和接觸點(diǎn)中存在材料缺陷和歐姆損耗,PV電池模型必須分別用串聯(lián)電阻(RS)和分流電阻(rsh)表示這些損耗。串聯(lián)電阻是一個(gè)關(guān)鍵參數(shù),因?yàn)樗拗屏薖V電池的可用功率(PMAX)和短路電流(ISC)。
PV電池的串聯(lián)電阻(rs)與電池上的金屬觸點(diǎn)電阻、電池前表面的歐姆損耗、雜志濃度和結(jié)深有關(guān)。在理想情況下,串聯(lián)電阻應(yīng)該為零。分流電阻表示由于沿電池邊緣的表面漏流或晶格缺陷造成的損耗。在理想情況下,分流電阻應(yīng)該為無(wú)窮大。
要提取光伏電池的重要測(cè)試參數(shù),需要進(jìn)行各種電氣測(cè)量工作。這些測(cè)量通常包含直流電流和電壓、電容以及脈沖I-V.
直流電流-電壓(I-V)測(cè)量(提供V測(cè)量I)
可以利用直流I-V曲線圖對(duì)PV電池進(jìn)行評(píng)測(cè),I-V圖通常表示太陽(yáng)能電池產(chǎn)生的電流與電壓的函數(shù)關(guān)系(如圖2所示)。電池能夠產(chǎn)生的功率(PMAX)出現(xiàn)在電流(IMAX)和電壓(VMAX)點(diǎn),曲線下方的面積表示不同電壓下電池能夠產(chǎn)生的輸出功率。我們可以利用基本的測(cè)量工具(例如安培計(jì)和電壓源),或者集成了電源和測(cè)量功能的儀器(例如數(shù)字源表或者源測(cè)量單元SMU),生成這種I-V曲線圖。為了適應(yīng)這類(lèi)應(yīng)用的需求,測(cè)試設(shè)備必須能夠在PV電池測(cè)量可用的量程范圍內(nèi)提供電壓源并吸收電流,同時(shí),提供分析功能以準(zhǔn)確測(cè)量電流和電壓。簡(jiǎn)化的測(cè)量配置如圖2所示。
電池電流(mA)/功率面積/電池電壓

圖2.該曲線給出了PV電池的典型正偏特性,其中功率(PMAX)出現(xiàn)在電流(IMAX)和電壓(VMAX)的交叉點(diǎn)。
太陽(yáng)能電池

圖3.對(duì)太陽(yáng)能電池進(jìn)行I-V曲線測(cè)量的典型系統(tǒng),由一個(gè)電流源和一個(gè)伏特計(jì)組成。
測(cè)量系統(tǒng)應(yīng)該支持四線測(cè)量模式。采用四線測(cè)量技術(shù)能夠解決引線電阻影響測(cè)量的問(wèn)題。例如,可以用其中一對(duì)測(cè)試引線提供電壓源,用另一對(duì)引線測(cè)量流過(guò)電池的電流。重要的是要把測(cè)試引線放在距離電池盡可能近一些的地方。
圖4給出了利用SMU測(cè)出的一種被照射的硅太陽(yáng)能電池的真實(shí)直流I-V曲線。由于SMU能夠吸收電流,因此該曲線通過(guò)第四象限,并且支持器件析出功率。

圖4.正偏(被照射的)PV電池的這種典型I-V曲線表示輸出電流隨電壓升高而快速上升的情形。
其它一些可以從PV電池直流I-V曲線中得出的數(shù)據(jù)表征了它的總體效率--將光能轉(zhuǎn)換為電能的好快程度--可以用一些參數(shù)來(lái)定義,包括它的能量轉(zhuǎn)換效率、功率性能和填充因數(shù)。功率點(diǎn)是電池電流和電壓的乘積,這個(gè)位置的電池輸出功率是的。
填充因數(shù)(FF)是將PV電池的I-V特性與理想電池I-V特性進(jìn)行比較的一種方式。理想情況下,它應(yīng)該等于1,但在實(shí)際的PV電池中,它一般是小于1的。它實(shí)際上等于太陽(yáng)能電池產(chǎn)生的功率(PMAX=IMAXVMAX)除以理想PV電池產(chǎn)生的功率。填充因數(shù)定義如下:
FF=IMAXVMAX/(ISCVOC)
其中IMAX=輸出功率時(shí)的電流,VMAX=輸出功率時(shí)的電壓,ISC=短路電流,VOC=開(kāi)路電壓。
轉(zhuǎn)換效率是光伏電池輸出功率(PMAX)與輸入功率(PIN)的比值,即:
h=PMAX/PIN
PV電池的I-V測(cè)量可以在正偏(光照下)或反偏(黑暗中)兩種情況下進(jìn)行。正偏測(cè)量是在PV電池照明受控的情況下進(jìn)行的,光照能量表示電池的輸入功率。用一段加載電壓掃描電池,并測(cè)量電池產(chǎn)生的電流。一般情況下,加載到PV電池上的電壓可以從0V到該電池的開(kāi)路電壓(VOC)進(jìn)行掃描。在0V下,電流應(yīng)該等于短路電流(ISC)。當(dāng)電壓為VOC時(shí),電流應(yīng)該為零。在如圖1所示的模型中,ISC近似等于負(fù)載電流(IL)。
PV電池的串聯(lián)電阻(rs)可以從至少兩條在不同光強(qiáng)下測(cè)量的正偏I(xiàn)-V曲線中得出。光強(qiáng)的大小并不重要,因?yàn)樗请妷鹤兓c電流變化的比值,即曲線的斜率,就一切情況而論這才是有意義的。記住,曲線的斜率從開(kāi)始到變化很大,我們所關(guān)心的數(shù)據(jù)出現(xiàn)在曲線的遠(yuǎn)正偏區(qū)域(far-forwardregion),這時(shí)曲線開(kāi)始表現(xiàn)出線性特征。在這一點(diǎn),電流變化的倒數(shù)與電壓的函數(shù)關(guān)系就得出串聯(lián)電阻的值:
rs=ΔV/ΔI
到目前為止本文所討論的測(cè)量都是對(duì)暴露在發(fā)光輸出功率下,即處于正偏條件下的PV電池進(jìn)行的測(cè)量。但是PV器件的某些特征,例如分流電阻(rsh)和漏電流,恰恰是在PV電池避光即工作在反偏情況下得到的。對(duì)于這些I-V曲線,測(cè)量是在暗室中進(jìn)行的,從起始電壓為0V到PV電池開(kāi)始擊穿的點(diǎn),測(cè)量輸出電流并繪制其與加載電壓的關(guān)系曲線。利用PV電池反偏I(xiàn)-V曲線的斜率也可以得到分流電阻的大小(如圖5所示)。從該曲線的線性區(qū),可以按下列公式計(jì)算出分流電阻:
rsh=ΔVReverseBias/ΔIReverseBias
V反偏/用于估算rsh的線性區(qū)/ΔI反偏/ΔV反偏/logI反偏

圖5.利用PV電池反偏I(xiàn)-V曲線的斜率可以得到PV電池的分流電阻。
除了在沒(méi)有任何光源的情況下進(jìn)行這些測(cè)量之外,我們還應(yīng)該對(duì)PV電池進(jìn)行正確地屏蔽,并在測(cè)試配置中使用低噪聲線纜。
電容測(cè)量
電容(或稱電容量)是表征電容器容納電荷本領(lǐng)的物理量。我們把電容器的兩極板間的電勢(shì)差增加1伏所需的電量,叫做電容器的電容。電容器從物理學(xué)上講,它是一種靜態(tài)電荷存儲(chǔ)介質(zhì)(就像一只水桶一樣,你可以把電荷充存進(jìn)去,在沒(méi)有放電回路的[1]情況下,刨除介質(zhì)漏電自放電效應(yīng)/電解電容比較明顯,可能電荷會(huì)存在,這是它的特征),它的用途較廣,它是電子、電力領(lǐng)域中不可缺少的電子元件。主要用于電源濾波、信號(hào)濾波、信號(hào)耦合、諧振、隔直流等電路中。 電子制作中需要用到各種各樣的電容器,它們?cè)陔娐分蟹謩e起著不同的作用。與電阻器相似,通常簡(jiǎn)稱其為電容,用字母C表示。顧名思義,電容器就是"儲(chǔ)存電荷的容器".盡管電容器品種繁多,但它們的基本結(jié)構(gòu)和原理是相同的。兩片相距很近的金屬中間被某物質(zhì)(固體、氣體或液體)所隔開(kāi),就構(gòu)成了電容器。兩片金屬稱為極板,中間的物質(zhì)叫做介質(zhì)。電容器也分為容量固定的與容量可變的。但常見(jiàn)的是固定容量的電容,多見(jiàn)的是電解電容和瓷片電容。
與I-V測(cè)量類(lèi)似,電容測(cè)量也用于太陽(yáng)能電池的特征分析。根據(jù)所需測(cè)量的電池參數(shù),我們可以測(cè)出電容與直流電壓、頻率、時(shí)間或交流電壓的關(guān)系。例如,測(cè)量PV電池的電容與電壓的關(guān)系有助于我們研究電池的摻雜濃度或者半導(dǎo)體結(jié)的內(nèi)建電壓。電容-頻率掃描則能夠?yàn)槲覀儗ふ襊V襯底耗盡區(qū)中的電荷陷阱提供信息。電池的電容與器件的面積直接相關(guān),因此對(duì)測(cè)量而言具有較大面積的器件將具有較大的電容。
C-V測(cè)量測(cè)得的是待測(cè)電池的電容與所加載的直流電壓的函數(shù)關(guān)系。與I-V測(cè)量一樣,電容測(cè)量也采用四線技術(shù)以補(bǔ)償引線電阻。電池必須保持四線連接。測(cè)試配置應(yīng)該包含帶屏蔽的同軸線纜,其屏蔽層連接要盡可能靠近PV電池以限度減少線纜的誤差?;陂_(kāi)路和短路測(cè)量的校正技術(shù)能夠減少線纜電容對(duì)測(cè)量的影響。C-V測(cè)量可以在正偏也可以在反偏情況下進(jìn)行。反偏情況下電容與掃描電壓的典型曲線(如圖6所示)表明在向擊穿電壓掃描時(shí)電容會(huì)迅速增大。

圖6.PV電池電容與電壓關(guān)系的典型曲線。
另外一種基于電容的測(cè)量是激勵(lì)電平電容壓型(DLCP),可在某些薄膜太陽(yáng)能電池(例如CIGS)上用于判斷PV電池缺陷密度與深度的關(guān)系。這種測(cè)量要加載一個(gè)掃描峰-峰交流電壓并改變直流電壓,同時(shí)進(jìn)行電容測(cè)量。必須調(diào)整這兩種電壓使得即使在掃描交流電壓時(shí)也保持總加載電壓(交流+直流)不變。通過(guò)這種方式,材料內(nèi)部一定區(qū)域中暴露的電荷密度將保持不變,我們就可以得到缺陷密度與距離的函數(shù)關(guān)系。
電阻率與霍爾電壓的測(cè)量
電阻率(resistivity)是用來(lái)表示各種物質(zhì)電阻特性的物理量。在常溫下(20℃時(shí)),某種材料制成的長(zhǎng)1米、橫截面積是1平方毫米的導(dǎo)線的電阻,叫做這種材料的電阻率。在溫度一定的情況下,有公式R=ρl/s 其中的ρ就是電阻率,l為材料的長(zhǎng)度, s為面積??梢钥闯?,材料的電阻大小正比于材料的長(zhǎng)度,而反比于其面積。由上式可知電阻率的定義:ρ=Rs/l.電阻率較低的物質(zhì)被稱為導(dǎo)體,常見(jiàn)導(dǎo)體主要為金屬,而自然界中導(dǎo)電性的是銀。其他不易導(dǎo)電的物質(zhì)如玻璃、橡膠等,電阻率較高,一般稱為絕緣體。介于導(dǎo)體和絕緣體之間的物質(zhì) (如硅) 則稱半導(dǎo)體。
PV電池材料的電阻率可以采用四針探測(cè)的方式3,通過(guò)加載電流源并測(cè)量電壓進(jìn)行測(cè)量,其中可以采用四點(diǎn)共線探測(cè)技術(shù)或者范德堡方法。
在使用四點(diǎn)共線探測(cè)技術(shù)進(jìn)行測(cè)量時(shí),其中兩個(gè)探針用于連接電流源,另兩個(gè)探針用于測(cè)量光伏材料上電壓降。在已知PV材料厚度的情況下,體積電阻率(ρ)可以根據(jù)下列公式計(jì)算得到:
ρ=(π/ln2)(V/I)(tk)
其中,ρ=體積電阻率,單位是Ωcm,V=測(cè)得的電壓,單位是V,I=源電流,單位是A,t=樣本厚度,單位是cm,k=校正系數(shù),取決于探針與晶圓直徑的比例以及晶圓厚度與探針間距的比例。
測(cè)量PV材料電阻率的另外一種技術(shù)是范德堡方法。這種方法利用平板四周四個(gè)小觸點(diǎn)加載電流并測(cè)量產(chǎn)生的電壓,待測(cè)平板可以是厚度均勻任意形狀的PV材料樣本。
范德堡電阻率測(cè)量方法需要測(cè)量8個(gè)電壓。測(cè)量V1到V8是圍繞材料樣本的四周進(jìn)行的,如圖7所示。

圖7.范德堡電阻率常用測(cè)量方法
按照下列公式可以利用上述8個(gè)測(cè)量結(jié)果計(jì)算出兩個(gè)電阻率的值:
  ρA=(π/ln2)(fAts)[(V1–V2+V3–V4)/4I]
  ρB=(π/ln2)(fBts)[(V5–V6+V7–V8)/4I]
其中,ρA和ρB分別是兩個(gè)體積電阻率的值,ts=樣本厚度,單位是cm,V1–V8是測(cè)得的電壓,單位是V,I=流過(guò)光伏材料樣品的電流,單位是A,fA和fB是基于樣本對(duì)稱性的幾何系數(shù),它們與兩個(gè)電阻比值QA和QB相關(guān),如下所示:
  QA=(V1–V2)/(V3–V4)
  QB=(V5–V6)/(V7–V8)
當(dāng)已知ρA和ρB的值時(shí),可以根據(jù)下列公式計(jì)算出平均電阻率(ρAVG):
ρAVG=(ρA+ρB)/2
高電阻率測(cè)量中的誤差可能來(lái)源于多個(gè)方面,包括靜電干擾、漏電流、溫度和載流子注入。當(dāng)把某個(gè)帶電的物理拿到樣本附近時(shí)就會(huì)產(chǎn)生靜電干擾。要想限度減少這些影響,應(yīng)該對(duì)樣本進(jìn)行適當(dāng)?shù)钠帘我员苊馔獠侩姾?。這種屏蔽可以采用導(dǎo)電材料制作,應(yīng)該通過(guò)將屏蔽層連接到測(cè)量?jī)x器的低電勢(shì)端進(jìn)行正確的接地。電壓測(cè)量中還應(yīng)該使用低噪聲屏蔽線纜。漏電流會(huì)影響高電阻樣本的測(cè)量。漏電流來(lái)源于線纜、探針和測(cè)試夾具,通過(guò)使用高質(zhì)量絕緣體,限度降低濕度,啟用防護(hù)式測(cè)量,包括使用三軸線纜等方式可以盡量減少漏電流。
脈沖式I-V測(cè)量
除了直流I-V和電容測(cè)量,脈沖式I-V測(cè)量也可用于得出太陽(yáng)能電池的某些參數(shù)。特別是,脈沖式I-V測(cè)量在判斷轉(zhuǎn)換效率、短載流子壽命和電池電容的影響時(shí)一直非常有用。
本文詳細(xì)介紹的這些PV測(cè)量操作都可以利用針對(duì)半導(dǎo)體評(píng)測(cè)設(shè)計(jì)的自動(dòng)化測(cè)試系統(tǒng)快速而簡(jiǎn)便地實(shí)現(xiàn),例如來(lái)自吉時(shí)利儀器公司的4200-SCS半導(dǎo)體特征分析系統(tǒng)4。該系統(tǒng)能夠采用四針探測(cè)方式提供并吸收電流,并支持軟件控制的電流、電壓和電容測(cè)量。該系統(tǒng)可以配置各種源和測(cè)量模塊,進(jìn)行連續(xù)式的和脈沖式的I-V與C-V測(cè)量,得到一些重要的PV電池參數(shù)。例如,該系統(tǒng)可以利用4225-PMU模塊連接到PV電池上進(jìn)行脈沖式I-V掃描(如圖8所示)5。除了提供脈沖電壓源,該P(yáng)MU還能夠吸收電流,從而測(cè)出太陽(yáng)能電池的輸出電流,如圖9所示。4200-SCS系統(tǒng)支持各種硬件模塊和軟件測(cè)量函數(shù)庫(kù)。
太陽(yáng)能電池/SMA同軸線連接公共端

圖8.4225-PMU模塊可用于PV電池的脈沖式I-V測(cè)量

  圖9.硅PV電池脈沖式I-V測(cè)量的繪圖表示曲線
 
版權(quán)與免責(zé)聲明
凡本網(wǎng)注明“出處:維庫(kù)電子市場(chǎng)網(wǎng)”的所有作品,版權(quán)均屬于維庫(kù)電子市場(chǎng)網(wǎng),轉(zhuǎn)載請(qǐng)必須注明維庫(kù)電子市場(chǎng)網(wǎng),http://www.udpf.com.cn,違反者本網(wǎng)將追究相關(guān)法律責(zé)任。
本網(wǎng)轉(zhuǎn)載并注明自其它出處的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,不承擔(dān)此類(lèi)作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品出處,并自負(fù)版權(quán)等法律責(zé)任。
如涉及作品內(nèi)容、版權(quán)等問(wèn)題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
- UPS電源中電流電壓傳感器的應(yīng)用2025/9/29 10:25:23
 - AC/DC 與 DC/DC 轉(zhuǎn)換器的工作原理與應(yīng)用2025/9/26 13:06:39
 - 線性穩(wěn)壓電源與開(kāi)關(guān)穩(wěn)壓電源:原理、特性及應(yīng)用2025/9/17 15:37:35
 - 直線電機(jī)工作原理與應(yīng)用全解析2025/9/12 9:44:24
 - 詳解 BUCK 電路電感額定電流:選型要點(diǎn)與合適數(shù)值2025/9/4 16:05:09
 
- 編碼器的工作原理及作用1
 - 超強(qiáng)整理!PCB設(shè)計(jì)之電流與線寬的關(guān)系2
 - 三星(SAMSUNG)貼片電容規(guī)格對(duì)照表3
 - 電腦藍(lán)屏代碼大全4
 - 國(guó)標(biāo)委發(fā)布《電動(dòng)汽車(chē)安全要求第3部分:人員觸電防護(hù)》第1號(hào)修改單5
 - 通俗易懂談上拉電阻與下拉電阻6
 - 繼電器的工作原理以及驅(qū)動(dòng)電路7
 - 電容單位8
 - 跟我學(xué)51單片機(jī)(三):?jiǎn)纹瑱C(jī)串口通信實(shí)例9
 - 一種三極管開(kāi)關(guān)電路設(shè)計(jì)10
 
- BOOST芯片的VIN與VOUT非常接近時(shí),會(huì)出現(xiàn)什么情況?
 - 如何在無(wú)線電連接設(shè)備中嵌入安全性
 - ADI芯品兼具高精度與低延遲的SAR ADC
 - Allegro發(fā)布革命性10MHz TMR電流傳感器ACS3
 - 串口、UART、RS232、RS485、USB、COM 口全面解析
 - 變壓器基礎(chǔ)知識(shí):原理、結(jié)構(gòu)與應(yīng)用
 - 一款高集成度雙通道、寬頻、自感式數(shù)字電感電容傳感芯片 - MLC12G
 - PCB生產(chǎn)制造中銀層缺陷應(yīng)對(duì)措施
 - 電路板電鍍中4種特殊的電鍍方法
 - 高通SA8155P芯片的接口協(xié)議
 









